Sixth Annual Conference on Carbon Capture & Sequestration

Session: Capture Membranes

The Membrane Solution to Global Warming

Haiqing Lin, Tim Merkel and Richard Baker Membrane Technology and Research, Inc.

May 7-10, 2007 • Sheraton Station Square • Pittsburgh, Pennsylvania

Outline

• Introduction to membrane gas separation technology

• Introduction to MTR

• System designs to recover CO₂ from coal power plant flue gas

Membrane technology

 Industrial membrane separation technology is a \$2-3 billion/year industry

• Mostly water treatment, reverse osmosis, microfiltration

• The gas separation business is ~\$250 million/year

Membrane technology

 Membranes have to be thin to provide useful fluxes

Spiral-wound and hollow fiber modules are used

Membrane gas separation plants can be big

- UOP Separex System, 6.5% CO₂ to 2% CO₂
- Treats 500 MMscfd (160 m³/s) of gas
- ~1/3 of a coal combustion plant
- ~100,000 m² of membrane

Membrane Technology & Research, Inc.

Principal products are separation systems for:

Petrochemicals
Propylene/Nitrogen
Separation

Natural Gas CO₂/CH₄, CH₄/N₂ NGL/CH₄

Hydrogen (Refinery)
H₂/CH₄, CO

Coal combustion produces a lot of flue gas

Coal
$$\longrightarrow$$
 CO₂ + N₂) \longrightarrow CO₂ + N₂

600MW \equiv 500 m³/s flue gas (13% CO₂) \equiv 1540 MMscfd flue gas = 460 tons CO₂/h

Target Separations: $CO_2/N_2 - Polaris^{TM}$

Membranes with very high gas permeances are required

PolarisTM (Mixed gas – 30°C)

Gas	Permeance (gpu)	Selectivity (CO ₂ /gas)	
Carbon dioxide	1,000		
Nitrogen	20	50	
Oxygen	50	20	
Carbon monoxide	20	50	
Methane	60	17	
Sulfur dioxide	>2,000	<1	
Hydrogen sulfide	>2,000	<1	
Water	>2,000	<1	
Argon	50	20	

Option I: Vacuum operation uses less power but lots of membrane

Option II: Feed gas compression uses less membrane but more power

Process comparison

One-Stage Separation – 70% CO₂ Recovery

Type of Operation	Membrane Area (000 m²)	Power Consumption (MW) (%)	Permeate CO ₂ Concentration (%)
Vacuum operation	1,800	45 (7.5)	63
Compression operation	250	68 (11)	59

- Vacuum operation does not save much power and uses lots more membrane.
- Multi-stage separations are needed to achieve the required separation.

Option III: Two-step, two-stage – with feed compression and permeate vacuum

CO ₂	Membrane	Power	Cost
Recovery	Area	Consumption	(\$/ton
(%)	(000 m²)	(MW)*	of CO ₂)
90	2,070	122	48

^{*} Power consumption includes the compression of the gas to 80 bar.

The MTR solution: Recycle gas to combustor

The MTR solution: Recycle gas to combustor

Designs	Membrane	Power	Cost
	Area	Consumption	(\$/ton
	(000 m²)	(MW)	of CO ₂)
Option III	2,070	122	48
MTR's	914	109	29

Conclusions

- Removal of CO₂ from flue gas is technically feasible, but economically challenging.
- CO₂ recycle to the combuster using counter-flow/sweep is a good way to reduce system cost.
- Membrane solution can recover 90% CO₂ at the expense of 18% power generated.
- Higher permeance membranes and lower cost membrane modules are desired.

